The Machine Learning Bazaar: Harnessing the ML Ecosystem for Effective System Development

*Micah J. Smith*¹, *Carles Sala*¹, *James Max Kanter*², *Kalyan Veeramachaneni*¹

¹MIT, ²Feature Labs

Deploying ML to solve real problems isn't easy.

Ideal **Real world** Training Data Machine Data Resource Monitoring Verification Management **Data Collection** Configuration Serving Machine Learning ML Code Infrastructure Algorithm Analysis Tools * Feature Process Extraction Estimated Management Tools

New

Input, x

Hypothesis, h

Output, y

How can we make building ML systems easier in practical settings?

The Machine Learning Bazaar A framework for designing and developing ML and AutoML systems

Curation

Composition

Primitives

Pipelines

Curation

Composition

Primitives

Pipelines

Curation

ML applications

- Orion
- Greenguard
- Cardea
- water

Core framework

- MLPrimitives
- MLBlocks
- BTB

AutoML systems

- mit-d3m-ta2
- AutoBazaar

The ML Bazaar

Curated collections

- primitives
- pipeline templates
- tuners
- selectors

Benchmarking

- ML Bazaar Task Suite
- mit-d3m
- d3m-dataset-downloader
- d3m-dataset-manager

Meta-analysis

- ml-pipelines data
- piex library
- ml-bazaar-analysis

ML applications

- Orion
- Greenguard
- Cardea
- water

Core framework

- MLPrimitives
- MLBlocks
- BTB

AutoML systems

- mit-d3m-ta2
- AutoBazaar

The ML Bazaar

Curated collections

- primitives
- pipeline templates
- tuners
- selectors

Benchmarking

- ML Bazaar Task Suite
- mit-d3m
- d3m-dataset-downloader
- d3m-dataset-manager

Meta-analysis

- ml-pipelines data
- piex library
- ml-bazaar-analysis

Orion Project

ML for telemetry data generated by satellites

 X_t +

+

https://github.com/signals-dev/orion Alnegheimish, Geiger, Liu, Sala, Veeramachaneni 2020

orion project

ML for telemetry data generated by satellites

pipeline	rank	holdout	accuracy	f1	precision	recall	elapsed
cyclegan.json	1	True	0.813596	0.388817	0.398299	0.684344	11679.3
cyclegan.json	2	False	0.835993	0.386045	0.420367	0.631183	11897.2
lstm_dynamic_threshold.json	3	False	0.862858	0.335507	0.418613	0.486285	2485.91
lstm_dynamic_threshold.json	4	True	0.833355	0.315074	0.402231	0.501001	1926.47
dummy.json	5	True	0.706477	0.255769	0.365821	0.460047	0.00778921
dummy.json	6	False	0.8049	0.229079	0.517508	0.286709	0.00542795
arima.json	7	False	0.52847	0.165833	0.211291	0.224588	537.567
arima.json	8	True	0.528483	0.165808	0.211391	0.224592	294.973
sum_24h_lstm.json	9	True	0.715023	0.059131	0.093512	0.0776259	3424.04
mean_24h_lstm.json	10	True	0.702763	0.0562528	0.0830615	0.109077	1808.26
median_24h_lstm.json	11	True	0.702342	0.0527362	0.0774	0.102952	2101.01
mean_24h_lstm.json	12	False	0.790045	0.0387521	0.103517	0.0432888	1848.14
sum_24h_lstm.json	13	False	0.821669	0.028044	0.0809271	0.0189294	3463.38
median_24h_lstm.json	14	False	0.803412	0.0245045	0.074956	0.033353	2138.08
skew_24h_lstm.json	15	False	0.831571	0.00575738	0.0178371	0.00343754	2244.59
skew_24h_lstm.json	16	True	0.733722	0.00412963	0.0110799	0.00257553	2185.13

MTV >			Logout
Datasets			
SMAP	MSL		
55 Signals 6 experiments unique pipelines	27 Signals 4 experiments unique pipelines		
Pipelines			
lstm	cyclegan		
DC: 2019-10-17	DC: 2019-10-17		
Experiments			
#1 SMAP_set1_lstm	#2 SMAP_set1_cyclegan	#3 SMAP_set2_lstm	#4 SMAP_set2_cycle
Signals: 10	Signals: 10	Signals: 3	Signals: 3
Events: 30	Events: 66	Events: 7	Events: 16
DC: 2019-10-17	DC: 2019-10-17	DC: 2019-10-17	DC: 2019-10-17
Bye null	Byroull	By: mult	Ric pull

<u>https://github.com/signals-dev/orion</u> Alnegheimish, Geiger, Liu, Sala, Veeramachaneni 2020

Primitive

- Software component
- Self-contained
- Context agnostic
- Reusable

- Expect some input data
- Produce new data
- May learn from data
- May have hyperparameters

TextCleaner GaussianBlur ClassEncoder

UniqueCounter

ResNet50Prep

XceptionPrep

MobileNetPrep

DenseNet121Prep

VocabularyCounter

Preprocessors

Feature Extractors Feature Generators

Primitive JSON

- Metadata
- Python Primitive
- Inputs
- Outputs
- Hyperparameters

```
"name": "mlp.custom.ts_pre.rolling_window_sequences",
"description": "Create rolling window sequences out of timeseries data.",
"classifiers": {"type": "preprocessor", "subtype": "feature extractor"}.
             WITD'CAPPONT'P DIG'LOTTING MINDOM PEQUENCE
 produce":
  "args": [
    {"name": "X", "type": "ndarray"},
    {"name": "index", "type": "ndarray"}
   output :
    {"name": "X", "type": "ndarray"}.
   {"name": "y", "type": "ndarray"},
    {"name": "index", "type": "ndarray"},
    {"name": "target_index", "type": "ndarray"]
"hyperparameters": {
  "fixed": {
    "target_size": {"type": "int", "default": 1},
    "target_column": {"type": "str or int", "default": 1}
 },
  "tunable": {
    "window_size": {"type": "int", "default": 250, "range": [1, 1000]},
    "step_size": {"type": "int", "default": 1, "range": [1, 1000]}
```

Pipelines

- Collection of Primitives
- Directed Acyclic Graph
- Single computational unit

Pipeline JSON

- Primitives List
- User specified parameters
- Variable Mappings

```
X
                                                          index
                                                                 time seaments
                                                                     average
"primitives": [
  "mlp.custom.ts_pre.time_segments_average",
                                                                      X↓
 "sklearn.impute.SimpleImputer",
                                                                  SimpleImputer
 "sklearn.preprocessing.MinMaxScaler",
  "mlp.custom.ts_pre.rolling_window_sequences",
                                                                      X↓
  "keras.Sequential.LSTMTimeSeriesRegressor",
                                                                  MinMaxScaler
 "mlp.custom.ts_anomalies.regression_errors",
                                                                      X↓
  "mlp.custom.ts_anomalies.find_anomalies"
                                                                 rolling_window_
                                                                    sequences
  "mlp.custom.ts_pre.time_segments_average#1": {
                                                                      XL
   "time_column": "timestamp",
    "interval": 21600
                                                                 LSTMTimeSeries
 }.
                                                                    Regressor
 "sklearn.preprocessing.MinMaxScaler#1": {
                                                                      ŷ↓
   "feature range": [-1, 1]
 }.
                                                                regression_errors
  "mlp.custom.ts_pre.rolling_window_sequences#1": {
                                                                  errors 🕹
   "target_column": 0.
   "window size": 250
                                                                 find anomalies
  },
                                                                      ŷ 🗸
 "keras.Sequential.LSTMTimeSeriesRegressor": {
    "epochs": 35
  "mlp.custom.ts_anomalies.find_anomalies#1": {"index": "target_index"}
}.
"output_names": {
  "keras.Sequential.LSTMTimeSeriesRegressor#1": {"y": "y_hat"}
```

index

MLPrimitives

- Primitives and pipelines repository
- Custom Python primitives and third party tools
- Tunable hyperparameters curated by experts
- Community driven contributions

Source	Count	Source	Count
scikit-learn	39	XGBoost	2
MLPrimitives (custom)	27	LightFM	1
Keras	25	OpenCV	1
pandas	16	python-louvain	1
Featuretools	4	scikit-image	1
NumPy	3	statsmodels	1
NetworkX	2		

Primitives in the curated catalog of MLPrimitives. Catalogs maintained by individual projects may contain more primitives.

MLBlocks

- Uniform API for any Python library
- Simplify construction of complex Pipelines
- Machine-readable tunable hyperparameters
- JSON language for primitives and pipelines

•••

```
from mlblocks import MLPipeline
from mlprimitives.datasets import load_dataset
dataset = load_dataset('census')
X_train, X_test, y_train, y_test = dataset.get_splits(1)
primitives = [
    'mlprimitives.custom.preprocessing.ClassEncoder',
    'mlprimitives.custom.feature_extraction.CategoricalEncoder',
    'sklearn.impute.SimpleImputer',
    'xgboost.XGBClassifier',
    'mlprimitives.custom.preprocessing.ClassDecoder'
]
pipeline = MLPipeline(primitives)
pipeline.fit(X_train, y_train)
predictions = pipeline.predict(X_test)
dataset.score(y_test, predictions)
```

DARPA D3M Program

design and implement AutoML systems that can produce a solution to arbitrary ML tasks with minimal human involvement

> Lippman et al, 2016, <u>https://gitlab.com/datadrivendiscovery</u>, <u>https://www.darpa.mil/program/data-driven-discovery-of-models</u>

DARPA D3M Program

design and implement AutoML systems that can produce a solution to arbitrary ML tasks with minimal human involvement

System	Top pipeline	Beats Expert 1	Beats Expert 2	Rank
System 1	29	57	31	1
ML Bazaar	18	56	28	2
System 3	15	47	22	3
System 4	14	46	21	4
System 5	10	42	14	5
System 6	8	43	15	6
System 7	8	33	12	7
System 8	6	24	11	8
System 9	4	25	13	9
System 10	2	27	12	10

Results from DARPA D3M Summer 2019 evaluation. Highlight System 6 (Shang et al, 2019) and System 7 (Drori et al, 2018) as publicly presented comparisons.

Lippman et al, 2016, <u>https://gitlab.com/datadrivendiscovery</u>, <u>https://www.darpa.mil/program/data-driven-discovery-of-models</u>

AutoBazaar

HDI-Pr	oject / AutoB	azaar				• Watch	4	🖈 Star	10	Ϋ́ Fork
> Code	() Issues 3	1) Pull requests 0	Actions	III Projects 0	C Security 0	Insights				
toBazaa	r: An AutoML	System from the Ma	chine Learnir	ng Bazaar https	s://hdi-project.git	hub.io/Auto	Baz			

Evaluation

- 1. ML Bazaar Task Suite
- 2. AutoBazaar computational performance
- 3. AutoBazaar AutoML performance
- 4. Expressiveness of curated primitives and pipelines
- 5. Case study of ML primitive comparison
- 6. Case study of AutoML primitive comparison
- 7. Lessons from 5 applications
- 8. Evaluation from DARPA D3M program

Evaluation

1. ML Bazaar Task Suite

2. AutoBazaar computational performance

- 3. AutoBazaar AutoML performance
- 4. Expressiveness of curated primitives and pipelines
- 5. Case study of ML primitive comparison
- 6. Case study of AutoML primitive comparison
- 7. Lessons from 5 applications
- 8. Evaluation from DARPA D3M program

ML Bazaar Task Suite

Data Modality	Problem Type	Tasks
graph	community detection	2
	graph matching	9
	link prediction	1
	vertex nomination	1
image	classification	5
	regression	1
multi table	classification	6
	regression	7
single table	classification	234
	collaborative filtering	4
	regression	87
	timeseries forecasting	35
text	classification	18
	regression	9
timeseries	classification	37

	min	p25	p50	p75	max
Number of examples	7	202	599	3,634	6,095,521
Number of classes †	2	2	3	6	115
Columns of X	1	3	9	22	10,937
Size (compressed)	3KiB	21KiB	145KiB	2MiB	36GiB
Size (inflated)	22KiB	117KiB	643KiB	7MiB	42GiB

AutoBazaar evaluation

- search and score 2.5 million pipelines on 456 tasks
- independent and parallel execution on heterogeneous cluster of 400 AWS EC2 nodes depending on task workload size

AutoBazaar evaluation

almost zero runtime overhead due to ABZ in searching for pipelines

opportunities for further pipeline-aware optimizations

Execution time of AutoBazaar pipeline search attributable to different components. The box plot shows quartiles of the distribution, 1.5x IQR, and outliers. Ext refers to calls to external libraries providing underlying implementations like sklearn GaussianProcessRegressor.

Thank you!

Read our paper: bit.ly/mlbazaar-paper Browse the project: mlbazaar.github.io Use our libraries: pip install mlbazaar Talk to us: mlbazaar@mit.edu

Special thanks to: Plamen Kolev, Laura Gustafson, William Xue, Akshay Ravikumar, Ihssan Tinawi, Alexander Geiger, Sarah Alnegheimish, Saman Amarasinghe, Dongyu Liu, Stefanie Jegelka, Zi Wang, Benjamin Schreck, Seth Rothschild, Manual Alvarez Campo, Sebastian Peral, Peter Fontana, and Brian Sandberg.

The Machine Learning Bazaar: Harnessing the ML Ecosystem for Effective System Development

Micah J. Smith¹, Carles Sala¹, James Max Kanter², Kalyan Veeramachaneni¹ ¹MIT, ²Feature Labs

